LTC3252EDE#TRPBF [Linear Systems]

LTC3252 - Dual, Low Noise, Inductorless Step-Down DC/DC Converter; Package: DFN; Pins: 12; Temperature Range: -40°C to 85°C;
LTC3252EDE#TRPBF
型号: LTC3252EDE#TRPBF
厂家: Linear Systems    Linear Systems
描述:

LTC3252 - Dual, Low Noise, Inductorless Step-Down DC/DC Converter; Package: DFN; Pins: 12; Temperature Range: -40°C to 85°C

文件: 总16页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3260  
Low Noise Dual Supply  
Inverting Charge Pump  
FEATURES  
DESCRIPTION  
The LTC®3260 is a low noise dual polarity output power  
supply that includes an inverting charge pump with both  
positive and negative LDO regulators. The charge pump  
operatesoverawide4.5Vto32Vinputrangeandcandeliver  
up to 100mA of output current. Each LDO regulator can  
provide up to 50mA of output current. The negative LDO  
post regulator is powered from the charge pump output.  
The LDO output voltages can be adjusted using external  
resistor dividers.  
n
V Range: 4.5V to 31V  
IN  
n
Inverting Charge Pump Generates –V  
IN  
n
Charge Pump Output Current Up to ±00mA  
n
n
n
Low Noise Negative LDO Post Regulator  
(I  
= 50mA Max)  
LDO  
Low Noise Independent Positive LDO Regulator  
+
(I  
= 50mA Max)  
LDO  
±00µA Quiescent Current in Burst Mode® Operation  
with Both LDO Regulators On  
n
n
n
n
50kHz to 500kHz Programmable Oscillator Frequency  
Stable with Ceramic Capacitors  
Short-Circuit/Thermal Protection  
Low Profile 3mm × 4mm 14-Pin DFN and Thermally  
Enhanced 16-Pin MSOP Packages  
The charge pump employs either low quiescent current  
Burst Mode operation or low noise constant frequency  
mode. In Burst Mode operation the charge pump V  
regulates to –0.94 • V , and the LTC3260 draws only  
100µA of quiescent current with both LDO regulators on.  
In constant frequency mode the charge pump produces  
an output equal to –V and operates at a fixed 500kHz  
or to a programmed value between 50kHz to 500kHz us-  
ing an external resistor. The LTC3260 is available in low  
profile (0.75mm) 3mm x 4mm 14-pin DFN and thermally  
enhanced 16-pin MSOP packages.  
L, LT, LTC, LTM, Burst Mode, Linear Technology and the Linear logo are registered trademarks  
and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
OUT  
IN  
APPLICATIONS  
IN  
n
Low Noise Bipolar/Inverting Supplies  
n
Industrial/Instrumentation Low Noise Bias  
Generators  
n
Portable Medical Equipment  
n
Portable Instruments  
TYPICAL APPLICATION  
LDO Rejection of VOUT Ripple  
±±1V Outputs from a Single ±5V Input  
+
+
V
12V  
15V  
V
LDO  
LDO  
IN  
10mV/DIV  
10µF  
10µF  
909k  
100k  
LTC3260  
AC-COUPLED  
+
+
+
EN  
EN  
ADJ  
BYP  
V
LDO  
10mV/DIV  
AC-COUPLED  
10nF  
10nF  
MODE  
GND  
V
OUT  
10mV/DIV  
+
100k  
909k  
C
BYP  
AC-COUPLED  
1µF  
C
ADJ  
3260 TA01b  
V
V
V
= 15V  
1µs/DIV  
IN  
–12V  
+
–15V  
V
OUT  
LDO  
= 12V  
LDO  
LDO  
OSC  
LDO  
10µF  
10µF  
RT  
= –12V  
3260 TA01a  
f
I
I
= 500kHz  
= 50mA  
–50mA  
+
200k  
LDO  
3260f  
1
LTC3260  
ABSOLUTE MAXIMUM RATINGS (Notes ±, 3)  
+
+
V , EN , EN , MODE.. ............................... –0.3V to 36V  
V
, LDO , LDO Short-Circuit Duration........ Indefinite  
IN  
OUT  
+
LDO ...........................................................–16V to 36V  
Operating Junction Temperature Range  
V
OUT  
, LDO ............................................... –36V to 0.3V  
(Note 2).................................................. –40°C to 125°C  
Storage Temperature Range ................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
+
RT, ADJ ...................................................... –0.3V to 6V  
BYP ......................................................... –0.3V to 2.5V  
+
ADJ ............................................................ –6V to 0.3V  
MSE Only..........................................................300°C  
BYP ......................................................... –2.5V to 0.3V  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
+
+
EN  
1
2
3
4
5
6
7
14 BYP  
+
+
+
1
2
3
4
5
6
7
8
EN  
RT  
16 BYP  
+
RT  
13 ADJ  
15 ADJ  
BYP  
12 MODE  
BYP  
14 MODE  
15  
17  
GND  
ADJ  
LDO  
13 EN  
ADJ  
LDO  
11 EN  
+
GND  
12 LDO  
+
10 LDO  
V
11 V  
10 C  
OUT  
IN  
+
C
V
9
8
V
C
OUT  
IN  
+
NC  
9
NC  
C
MSE PACKAGE  
16-LEAD PLASTIC MSOP  
= 150°C, θ = 43°C/W  
JA  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
DE PACKAGE  
T
JMAX  
14-LEAD (4mm × 3mm) PLASTIC DFN  
T
= 150°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 15) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3260EDE#PBF  
LTC3260IDE#PBF  
LTC3260EMSE#PBF  
LTC3260IMSE#PBF  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3260EDE#TRPBF  
LTC3260IDE#TRPBF  
LTC3260EMSE#TRPBF  
LTC3260IMSE#TRPBF  
3260  
3260  
3260  
3260  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping  
container.Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3260f  
2
LTC3260  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 15°C (Note 1). VIN = EN+ = EN= ±1V, MODE = 0V, RT = 100kΩ.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Charge Pump  
l
V
V
Input Voltage Range  
4.5  
3.4  
32  
4
V
IN  
l
l
V
Undervoltage Lockout Threshold  
V
IN  
V
IN  
Rising  
Falling  
3.8  
3.6  
V
V
UVLO  
IN  
+
+
I
V
Quiescent Current  
Shutdown, EN = EN = 0V  
2
5
µA  
µA  
VIN  
IN  
EN = 0V, I  
= 0mA  
30  
50  
LDO  
IN  
+
MODE = V , EN = 0V, I  
= I  
LDO  
= 0mA  
80  
100  
3.5  
160  
200  
5.5  
µA  
VOUT  
+
LDO  
MODE = V , I  
MODE = 0V, I  
= I  
= 0mA  
= I  
= 0mA  
µA  
mA  
IN VOUT  
VOUT  
LDO  
V
V
RT Regulation Voltage  
Regulation Voltage  
1.200  
V
RT  
V
MODE = 12V  
MODE = 0V  
–0.94 • V  
IN  
V
V
OUT  
OUT  
–V  
IN  
f
Oscillator Frequency  
RT = GND  
450  
100  
0.4  
500  
32  
550  
kHz  
Ω
OSC  
R
Charge Pump Output Impedance  
MODE = 0V, RT = GND  
OUT  
l
l
l
I
Max I  
Short-Circuit Current  
V = GND  
OUT  
160  
1.1  
1.0  
0.7  
250  
2.0  
mA  
V
SHORT_CKT  
VOUT  
V
V
MODE Threshold Rising  
MODE(H)  
MODE(L)  
MODE  
MODE Threshold Falling  
V
I
MODE Pin Internal Pull-Down Current  
V
= MODE = 32V  
µA  
IN  
50mA Positive Regulator  
+
l
l
LDO Output Voltage Range  
1.2  
1.176  
–50  
50  
32  
1.224  
50  
V
V
+
+
V
ADJ  
ADJ Reference Voltage  
1.200  
+
+
I
I
ADJ+ Input Current  
V
= 1.2V  
nA  
ADJ  
ADJ  
+
+
l
LDO Short-Circuit Current  
100  
0.04  
0.03  
400  
100  
1.1  
mA  
LDO (SC)  
Line Regulation  
Load Regulation  
mV/V  
mV/mA  
mV  
+
+
+
V
LDO Dropout Voltage  
I
= 50mA  
= 10nF  
800  
2.0  
DROPOUT  
LDO  
+
Output Voltage Noise  
C
µV  
RMS  
BYP  
+
+
l
l
V
V
EN Threshold Rising  
V
EN (H)  
+
+
EN Threshold Falling  
0.4  
1.0  
V
EN (L)  
+
+
+
I
EN Pin Internal Pull-Down Current  
V
= EN = 32V  
0.7  
µA  
EN  
IN  
50mA Negative Regulator  
l
l
LDO Output Voltage Range  
–32  
–1.224  
–50  
–1.2  
–1.176  
50  
V
V
V
ADJ  
ADJ Reference Voltage  
–1.200  
I
I
ADJ Input Current  
V
= –1.2V  
nA  
mA  
ADJ  
ADJ  
l
LDO Short-Circuit Current  
50  
100  
0.002  
0.02  
200  
100  
1.1  
LDO (SC)  
Line Regulation  
Load Regulation  
mV/V  
mV/mA  
mV  
V
LDO Dropout Voltage  
I
= 50mA  
= 10nF  
500  
2.0  
DROPOUT  
EN(H)  
LDO  
Output Voltage Noise  
C
µV  
RMS  
BYP  
l
l
V
V
EN Threshold Rising  
V
EN Threshold Falling  
0.4  
1.0  
V
EN(L)  
I
EN Pin Internal Pull-Down Current  
V
= EN = 32V  
1.4  
µA  
EN  
IN  
3260f  
3
LTC3260  
ELECTRICAL CHARACTERISTICS  
Note ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
The junction temperature (T , in °C) is calculated from the ambient  
J
temperature (T , in °C) and power dissipation (P , in Watts) according to  
A
D
the formula:  
T = T + (P θ ),  
J
A
D
JA  
Note 1: The LTC3260 is tested under pulsed load conditions such that  
where θ = 43°C/W is the package thermal impedance.  
JA  
T ≈ T . The LTC3260E is guaranteed to meet specifications from  
J
A
Note 3: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperatures will exceed 150°C when overtemperature protection is  
active. Continuous operation above the specified maximum operating  
junction temperature may result in device degradation or failure.  
0°C to 85°C junction temperature. Specifications over the –40°C to  
125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3260I is guaranteed over the –40°C to 125°C operating junction  
temperature range. Note that the maximum ambient temperature  
consistent with these specifications is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
impedance and other environmental factors.  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 15°C, CFLY = ±µF, CIN = COUT = CLDO+ = CLDO= ±0µF unless otherwise noted)  
Oscillator Frequency  
vs Supply Voltage  
Oscillator Frequency vs RT  
Shutdown Current vs Temperature  
600  
16  
14  
12  
10  
8
600  
500  
400  
300  
R
T
= GND  
500  
400  
V
IN  
= 32V  
300  
200  
R
T
= 200kΩ  
6
200  
100  
0
V
= 12V  
= 5V  
IN  
4
100  
0
2
V
IN  
0
50 75  
TEMPERATURE (°C)  
–50 –25  
0
25  
100 125 150  
1
10  
100  
(kΩ)  
1000  
10000  
20  
30  
35  
0
5
10  
15  
25  
R
SUPPLY VOLTAGE (V)  
T
3260 G02  
3260 G03  
3260 G01  
Quiescent Current vs Supply  
Voltage (Constant Frequency Mode)  
Quiescent Current vs Temperature  
(Constant Frequency Mode)  
Quiescent Current vs Temperature  
10  
9
8
7
6
5
4
3
2
1
0
16  
160  
140  
120  
100  
80  
V
IN  
= 12V  
V
= 12V  
IN  
14  
12  
f
= 500kHz  
Burst Mode OPERATION  
WITH BOTH LDOs ON  
OSC  
10  
8
f
= 500kHz  
OSC  
f
= 200kHz  
= 50kHz  
Burst Mode OPERATION  
WITH NEGATIVE LDO ON  
OSC  
6
60  
f
= 200kHz  
OSC  
4
40  
f
f
= 50kHz  
25  
OSC  
OSC  
2
POSITIVE LDO ON  
20  
0
0
50 75  
TEMPERATURE (°C)  
5
10  
20  
30  
35  
125  
100  
150  
–50 –25  
0
25  
100 125 150  
0
15  
–50  
50  
–25  
0
25  
75  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
3260 G04  
3260 G05  
3260 G06  
3260f  
4
LTC3260  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 15°C, CFLY = ±µF, CIN = COUT = CLDO+ = CLDO= ±0µF unless otherwise noted)  
Voltage Loss (VIN – |VOUT|)  
vs Output Current (Constant  
Frequency Mode)  
Effective Open-Loop Resistance  
vs Temperature  
V
OUT Short-Circuit Current  
vs Supply Voltage  
250  
200  
150  
100  
50  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
60  
50  
40  
30  
20  
10  
0
V
= 12V  
f
= 500kHz  
IN  
OSC  
R
= GND  
f
= 200kHz  
T
OSC  
f
= 50kHz  
OSC  
R
T
= 200kΩ  
V
V
V
= 32V  
= 25V  
= 12V  
IN  
IN  
IN  
f
= 500kHz  
OSC  
0
75 100  
–50 –25  
0
25 50  
125 150  
0.1  
1
10  
100  
0
5
10  
15  
20  
25  
30  
35  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE (V)  
3620 G07  
3260 G09  
3260 G08  
LDO+ Dropout Voltage  
vs Temperature  
Effective Open-Loop Resistance  
vs Supply Voltage  
ADJ+ Pin Voltage vs Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
800  
700  
600  
500  
400  
300  
200  
100  
0
1.224  
1.212  
1.200  
1.188  
1.176  
V
LDO  
= 12V  
IN  
+
I
= 50mA  
f
= 200kHz  
= 500kHz  
OSC  
OSC  
f
0
50 75  
25  
TEMPERATURE (°C)  
–50 –25  
0
100 125 150  
0
5
10  
15  
30  
35  
–50 –25  
0
25  
50 75  
100 125 150  
20  
25  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
3260 G12  
3260 G10  
3260 G11  
LDO+ Supply Rejection  
LDO+ GND Pin Current vs ILOAD  
LDO+ Load Regulation  
60  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.2006  
1.2004  
1.2002  
1.2000  
1.1998  
1.1996  
1.1994  
V
= 12V  
V
= 12V  
IN  
IN  
UNITY GAIN  
50  
40  
30  
20  
10  
0
V
V
I
= 6.5V  
IN  
+
= 5V  
LDO  
LDO  
RIPPLE  
+
= 50mA  
V
= 50mV  
RMS  
+
C
= 10µF  
LDO  
0
1
10  
100  
0.1  
1
10  
100  
3260 G15  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
+
I
(mA)  
I
(mA)  
LDO  
LOAD  
3260 G13  
3260 G14  
3260f  
5
LTC3260  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 15°C, CFLY = ±µF, CIN = COUT = CLDO+ = CLDO= ±0µF unless otherwise noted)  
LDODropout Voltage  
ADJPin Voltage vs Temperature  
vs Temperature  
LDOPower Supply Rejection  
60  
400  
350  
300  
250  
200  
150  
100  
50  
–1.176  
–1.188  
–1.200  
–1.212  
–1.224  
V
LDO  
= –12V  
= 50mA  
OUT  
I
50  
40  
30  
20  
10  
0
V
V
I
= –6.5V  
OUT  
LDO  
LDO  
= –5V  
= –50mA  
V
= 50mV  
RIPPLE  
RMS  
C
= 10µF  
LDO  
0
50 75  
25  
TEMPERATURE (°C)  
–50 –25  
0
100 125 150  
50 75  
TEMPERATURE (°C)  
–50 –25  
0
25  
100 125 150  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
3260 G18  
3260 G17  
3260 G16  
LDO+ Load Transient  
LDOLoad Regulation  
LDO Rejection of VOUT Ripple  
–1.1994  
–1.1996  
–1.1998  
–1.2000  
–1.2002  
–1.2004  
–1.2006  
V
= –12V  
OUT  
UNITY GAIN  
+
+
V
V
LDO  
LDO  
10mV/DIV  
AC-COUPLED  
10mV/DIV  
AC-COUPLED  
V
LDO  
10mV/DIV  
AC-COUPLED  
V
OUT  
20mA  
+
10mV/DIV  
I
LDO  
AC-COUPLED  
2mA  
3260 G20  
3260 G21  
1µs/DIV  
V
V
V
f
I
I
= 15V  
V
= 12V  
IN  
40µs/DIV  
IN  
+
+
= 12V  
V
= 5V  
LDO  
LDO  
LDO  
OSC  
LDO  
= –12V  
= 500kHz  
= 50mA  
–50mA  
0.1  
1
10  
100  
+
I
(mA)  
LDO  
LDO  
3260 G19  
VOUT Transient (Burst Mode  
Operation, MODE = H)  
VOUT Transient  
(MODE = Low to High)  
LDOLoad Transient  
V
OUT  
V
V
LDO  
OUT  
500mV/DIV  
10mV/DIV  
AC-COUPLED  
500mV/DIV  
AC-COUPLED  
AC-COUPLED  
–5mA  
I
MODE  
OUT  
–2mA  
–50mA  
I
LDO  
–20mA  
3260 G22  
3260 G23  
3260 G24  
V
V
= 12V  
LDO  
REFER TO FIGURE 3  
40µs/DIV  
V
OSC  
= 12V  
2ms/DIV  
V
= 12V  
= 500kHz  
= –5mA  
2ms/DIV  
IN  
IN  
IN  
= –5V  
f
= 500kHz  
f
I
OSC  
OUT  
3260f  
6
LTC3260  
PIN FUNCTIONS (DFN/MSOP)  
EN (Pin ±/Pin ±): Logic Input. A logic “high” on the EN  
pin enables the positive low dropout (LDO ) regulator.  
+
+
+
+
LDO (Pin ±0/Pin ±1): Positive Low Dropout (LDO )  
Output. This pin requires a low ESR capacitor with at least  
2µF capacitance to ground for stability.  
+
RT (Pin 1/Pin 1): Input Connection for Programming the  
Switching Frequency. The RT pin servos to a fixed 1.2V  
EN (Pin ±±/Pin ±3): Logic Input. A logic “high” on the  
whentheEN pinisdriventoalogichigh”.Aresistorfrom  
EN pin enables the inverting charge pump as well as the  
RT to GND sets the charge pump switching frequency. If  
the RT pin is tied to GND, the switching frequency defaults  
to a fixed 500kHz.  
negative LDO regulator.  
MODE (Pin ±1/Pin ±4): Logic Input. The MODE pin deter-  
mines the charge pump operating mode. A logic “high”  
on the MODE pin forces the charge pump to operate in  
Burst Mode operation regulating V  
–0.94 • V with hysteretic control. A logic “low” on the  
BYP (Pin 3/Pin 3): LDO Reference Bypass Pin. Connect  
a capacitor from BYP to GND to reduce LDO output  
noise. Leave floating if unused.  
to approximately  
OUT  
IN  
MODE pin forces the charge pump to operate as an open-  
loop inverter with a constant switching frequency. The  
switching frequency in both modes is determined by an  
external resistor from the RT pin to GND. In Burst Mode  
operation,thisrepresentsthefrequencyoftheburstcycles  
beforethepartentersthelowquiescentcurrentsleepstate.  
ADJ (Pin 4/Pin 4): Feedback Input for the Negative Low  
Dropout Regulator. This pin servos to a fixed voltage of  
–1.2V when the control loop is complete.  
LDO (Pin 5/Pin 5): Negative Low Dropout (LDO ) Linear  
Regulator Output. This pin requires a low ESR (equivalent  
series resistance) capacitor with at least 2µF capacitance  
to ground for stability.  
+
ADJ (Pin ±3/Pin ±5): Feedback Input for the Positive  
+
Low Dropout (LDO ) Regulator. This pin servos to a fixed  
V
(Pin 6/Pin 6): Charge Pump Output Voltage. In  
voltage of 1.2V when the control loop is complete.  
OUT  
constant frequency mode (MODE = low) this pin is driven  
+
+
BYP (Pin ±4/Pin ±6): LDO Reference Bypass Pin. Con-  
to –V . In Burst Mode operation, (MODE = high) this pin  
IN  
+
+
nect a capacitor from BYP to GND to reduce LDO output  
noise. Leave floating if unused.  
voltage is regulated to –0.94 • V using an internal burst  
IN  
comparator with hysteretic control.  
GND (Exposed Pad Pin ±5/Exposed Pad Pin ±7): Ground.  
The exposed package pad is ground and must be soldered  
to the PC board ground plane for proper functionality and  
for rated thermal performance.  
C (Pin 7/Pin 7): Flying Capacitor Negative Connection.  
+
C (Pin 8/Pin ±0): Flying Capacitor Positive Connection.  
NC(Pins8,9MSOPOnly):NoConnect.Thesepinsarenot  
connected to the LTC3260 die. These pins should be left  
floating, connected to ground or shorted to adjacent pins.  
V (Pin 9/Pin ±±): Input Voltage for Both Charge Pump  
IN  
+
and Positive Low Dropout (LDO ) Regulator. V should  
be bypassed with a low impedance ceramic capacitor.  
IN  
3260f  
7
LTC3260  
BLOCK DIAGRAM  
Note: Pin numbers are as per DFN package. Refer to the Pin Functions section for corresponding MSOP pin numbers.  
1
+
EN  
INVERTING  
CHARGE PUMP  
+
V
C
LDO  
IN  
9
8
10  
S1  
S4  
S3  
S2  
+
C
7
6
+
+
+
ADJ  
13  
14  
V
OUT  
+
BYP  
1.2V  
REF  
50kHz  
TO  
500kHz  
OSC  
RT  
EN  
BYP  
–1.2V  
REF  
2
3
4
ADJ  
CHARGE  
PUMP  
AND  
11  
12  
MODE  
INPUT  
LOGIC  
LDO  
5
GND  
15  
OPERATION (Refer to the Block Diagram)  
The LTC3260 is a high voltage low noise dual output  
regulator. It includes an inverting charge pump and two  
LDO regulators to generate bipolar low noise supply rails  
fromasinglepositiveinput.Itsupportsawideinputpower  
supply range from 4.5V to 32V.  
Charge Pump Constant Frequency Operation  
The LTC3260 provides low noise constant frequency op-  
eration when a logic low is applied to the MODE pin. The  
charge pump and oscillator circuit are enabled using the  
EN pin. At the beginning of a clock cycle, switches S1 and  
+
S2 are closed. The external flying capacitor across the C  
Shutdown Mode  
and C pins is charged to the V supply. In the second  
IN  
In shutdown mode, all circuitry except the internal bias is  
turned off. The LTC3260 is in shutdown when a logic low  
phase of the clock cycle, switches S1 and S2 are opened,  
while switches S3 and S4 are closed. In this configuration  
+
+
is applied to both the enable inputs (EN and EN ). The  
the C side of the flying capacitor is grounded and charge  
LTC3260 only draws 2µA (typical) from the V supply  
is delivered through the C pin to V . In steady state  
IN  
OUT  
in shutdown.  
the V  
pin regulates at –V less any voltage drop due  
OUT  
IN  
to the load current on V  
or LDO.  
OUT  
3260f  
8
LTC3260  
OPERATION (Refer to the Block Diagram)  
The charge transfer frequency can be adjusted between  
50kHz and 500kHz using an external resistor on the RT  
pin. At slower frequencies the effective open-loop output  
recommended that the RT pin be tied to GND. This mini-  
mizes the charge pump R , quickly charges the output  
OL  
up to the burst threshold and optimizes the duration of  
the low current sleep state.  
resistance (R ) of the charge pump is larger and it is  
OL  
able to provide smaller average output current (see the  
Charge Pump Soft-Start  
Available Output Current vs f  
graph in the Typical Per-  
OSC  
formance Characteristics section). Figure 1 can be used  
to determine a suitable value of RT to achieve a required  
oscillator frequency. If the RT pin is grounded, the part  
operates at a constant frequency of 500kHz.  
The LTC3260 has built in soft-start circuitry to prevent  
excessive current flow during start-up. The soft-start is  
achievedbyinternalcircuitrythatslowlyrampstheamount  
of current available at the output storage capacitor. The  
soft-start circuitry is reset in the event of a commanded  
shutdown or thermal shutdown.  
600  
500  
400  
Charge Pump Short-Circuit/Thermal Protection  
The LTC3260 has built-in short-circuit current limit as  
well as overtemperature protection. During a short-circuit  
condition, the part automatically limits its output current  
to approximately 160mA. If the junction temperature  
exceeds approximately 175°C the thermal shutdown  
circuitry disables current delivery to the output. Once  
the junction temperature drops back to approximately  
165°C current delivery to the output is resumed. When  
thermal protection is active the junction temperature is  
beyond the specified operating range. Thermal protection  
is intended for momentary overload conditions outside  
normal operation. Continuous operation above the speci-  
fiedmaximumoperatingjunctiontemperaturemayimpair  
device reliability.  
300  
200  
100  
0
1
10  
100  
(kΩ)  
1000  
10000  
R
T
3260 F01  
Figure ±. Oscillator Frequency vs RT  
Charge Pump Burst Mode Operation  
The LTC3260 provides low power Burst Mode operation  
when a logic high is applied to the MODE pin. In Burst  
Mode operation, the charge pump charges the V  
pin to  
OUT  
+
Positive Low Dropout Linear Regulator (LDO )  
–0.94 • V (typical). The part then shuts down the internal  
IN  
+
Thepositivelowdropoutregulator(LDO )supportsaload  
oscillator to reduce switching losses and goes into a low  
current state. This state is referred to as the sleep state in  
which the IC consumes only about 100µA with both LDOs  
enabled. When the output voltage droops enough to over-  
come the burst comparator hysteresis, the part wakes up  
and commences charge pump cycles until output voltage  
+
of up to 50mA. The LDO takes power from the V pin  
IN  
+
and drives the LDO output pin to a voltage programmed  
+
+
by the resistor divider connected between the LDO , ADJ  
+
and GND pins. For stability, the LDO output must be by-  
passed to ground with a low ESR ceramic capacitor that  
maintains a capacitance of at least 2µF across operating  
temperature and voltage.  
exceeds –0.94 • V (typical). This mode provides lower  
IN  
operating current at the cost of higher output ripple and  
is ideal for light load operation.  
+
+
TheLDO isenabledordisabledviatheEN logicinputpin.  
+
When the LDO is enabled, a soft-start circuit ramps its  
The frequency of charging cycles is set by the external  
resistor on the RT pin. The charge pump has a lower  
regulation point from zero to the final value over a period  
of 75µs, reducing the inrush current on V .  
R
at higher frequencies. For Burst Mode operation it is  
IN  
OL  
3260f  
9
LTC3260  
OPERATION (Refer to the Block Diagram)  
+
Figure 2 shows the LDO regulator application circuit.  
negative by the charge pump circuitry. Soft-start circuitry  
in the charge pump also provides soft-start functionality  
+
+
The LDO output voltage V  
can be programmed by  
LDO  
choosing suitable values of R1 and R2 such that:  
for the LDO and prevents excessive inrush currents.  
Figure 3 shows the LDO regulator application circuit.  
R1  
R2  
+
VLDO = 1.2V •  
+ 1  
The LDO output voltage V  
choosing suitable values of R1 and R2 such that:  
can be programmed by  
LDO  
An optional capacitor of 10nF can be connected from the  
R1  
R2  
+
BYP pin to ground. This capacitor bypasses the internal  
VLDO = –1.2V •  
+ 1  
1.2V reference of the LTC3260 and improves the noise  
+
performance of the LDO . If this function is not used the  
When the inverting charge pump is in Burst Mode opera-  
+
BYP pin should be left floating.  
tion (MODE = high), the typical hysteresis on the V  
OUT  
V
pin is 2% of V voltage. The LDO voltage should be set  
LTC3260  
IN  
IN  
high enough above V  
in order to prevent LDO from  
0
OUT  
+
EN  
entering dropout during normal operation.  
+
LDO  
LDO  
OUTPUT  
1
An optional capacitor of 10nF can be connected from the  
C
R1  
R2  
OUT  
+
+
ADJ  
BYP  
BYP pin to ground. This capacitor bypasses the internal  
–1.2V reference of the LTC3260 and improves the noise  
+
C
1.2V  
REF  
BYP  
performance of the LDO . If this function is not used the  
GND  
BYP pin should be left floating.  
3260 F02  
In order to improve transient response, an optional  
Figure 1: Positive LDO Application Circuit  
capacitor, C  
, may be used as shown in Figure 3. A  
ADJ  
recommended value for C  
is 10pF. Experimentation  
ADJ  
Negative Low Dropout Linear Regulator (LDO )  
with capacitor values between 2pF and 22pF may yield  
improved transient response.  
The negative low dropout regulator (LDO ) supports a  
load of up to 50mA. The LDO takes power from the V  
OUT  
pin (output of the inverting charge pump) and drives the  
LTC3260  
GND  
–1.2V  
REF  
LDO output pin to a voltage programmed by the resis-  
C
C
BYP  
BYP  
ADJ  
tor divider connected between the LDO , ADJ and GND  
R2  
R1  
pins. For stability, the LDO output must be bypassed to  
ADJ  
ground with a low ESR ceramic capacitor that maintains a  
capacitance of at least 2µF across operating temperature  
and voltage.  
LDO  
LDO  
1
0
OUTPUT  
EN  
C
OUT  
3260 F03  
The LDO is enabled or disabled via the EN logic input  
V
OUT  
pin. Initially, when the EN logic input is low, the charge  
pump circuitry is disabled and the V  
pin is at GND.  
OUT  
Figure 3: Negative LDO Application Circuit  
When EN is switched high, the V  
pin will be driven  
OUT  
3260f  
10  
LTC3260  
APPLICATIONS INFORMATION  
Effective Open-Loop Output Resistance  
minimum turn-on time. The peak-to-peak output ripple at  
the V  
pin is approximately given by the expression:  
OUT  
Theeffectiveopen-loopoutputresistance(R )ofacharge  
OL  
pump is a very important parameter which determines the  
strength of the charge pump. The value of this parameter  
depends on many factors such as the oscillator frequency  
IOUT  
COUT fOSC  
1
VRIPPLE(P-P)  
– t  
ON   
(f ), value of the flying capacitor (C ), the nonoverlap  
OSC  
FLY  
where C  
is the value of the output capacitor, f  
oscillator frequency and t is the on-time of the oscillator  
is the  
OSC  
OUT  
time, the internal switch resistances (R ) and the ESR of  
S
ON  
the external capacitors.  
(1µs typical).  
Typical R values as a function of temperature are shown  
OL  
Just as the value of C  
controls the amount of output  
OUT  
in Figure 4  
ripple,thevalueofC controlstheamountofripplepresent  
IN  
at the input (V ) pin. The amount of bypass capacitance  
60  
IN  
f
= 500kHz  
OSC  
required at the input depends on the source impedance  
50  
40  
30  
20  
10  
0
driving V . For best results it is recommended that V  
IN  
IN  
be bypassed with at least 2µF of low ESR capacitance. A  
high ESR capacitor such as tantalum or aluminum will  
have higher input noise than a low ESR ceramic capacitor.  
Therefore, a ceramic capacitor is recommended as the  
main bypass capacitance with a tantalum or aluminum  
capacitor used in parallel if desired.  
V
V
V
= 32V  
= 25V  
= 12V  
IN  
IN  
IN  
Flying Capacitor Selection  
75 100  
–50 –25  
0
25 50  
125 150  
TEMPERATURE (°C)  
The flying capacitor controls the strength of the charge  
pump. A 1µF or greater ceramic capacitor is suggested  
for the flying capacitor for applications requiring the full  
rated output current of the charge pump.  
3620 F04  
Figure 4. Typical ROL vs Temperature  
Input/Output Capacitor Selection  
For very light load applications, the flying capacitor may  
be reduced to save space or cost. For example, a 0.2µF  
capacitormightbesufficientforloadcurrentsupto20mA.  
A smaller flying capacitor leads to a larger effective open-  
The style and value of capacitors used with the LTC3260  
determineseveralimportantparameterssuchasregulator  
control loop stability, output ripple, charge pump strength  
and minimum turn-on time. To reduce noise and ripple,  
it is recommended that low ESR ceramic capacitors be  
used for the charge pump and LDO outputs. All capacitors  
should retain at least 2µF of capacitance over operating  
temperature and bias voltage. Tantalum and aluminum  
capacitors can be used in parallel with a ceramic capacitor  
to increase the total capacitance but should not be used  
alone because of their high ESR. In constant frequency  
loop resistance (R ) and thus limits the maximum load  
OL  
current that can be delivered by the charge pump.  
Ceramic Capacitors  
Ceramiccapacitorsofdifferentmaterialslosetheircapaci-  
tancewithhighertemperatureandvoltageatdifferentrates.  
For example, a capacitor made of X5R or X7R material  
will retain most of its capacitance from –40°C to 85°C  
whereasaZ5UorY5Vstylecapacitorwillloseconsiderable  
capacitance over that range. Z5U and Y5V capacitors may  
mode, the value of C  
directly controls the amount of  
OUT  
outputrippleforagivenloadcurrent.Increasingthesizeof  
will reduce the output ripple at the expense of higher  
C
OUT  
3260f  
11  
LTC3260  
APPLICATIONS INFORMATION  
+
The flying capacitor nodes C and C switch large cur-  
rents at a high frequency. These nodes should not be  
routed close to sensitive pins such as the LDO feedback  
also have a poor voltage coefficient causing them to lose  
60% or more of their capacitance when the rated voltage  
isapplied.Thereforewhencomparingdifferentcapacitors,  
it is often more appropriate to compare the amount of  
achievable capacitance for a given case size rather than  
discussing the specified capacitance value. The capacitor  
manufacture’s data sheet should be consulted to ensure  
the desired capacitance at all temperatures and voltages.  
Table 1 is a list of ceramic capacitor manufacturers and  
their websites.  
+
pins (ADJ and ADJ ) and internal reference bypass pins  
+
(BYP and BYP ).  
Thermal Management  
At high input voltages and maximum output current, there  
can be substantial power dissipation in the LTC3260. If  
the junction temperature increases above approximately  
175°C, the thermal shutdown circuitry will automatically  
deactivate the output. To reduce the maximum junction  
temperature, a good thermal connection to the PC board  
groundplaneisrecommended.Connectingtheexposedpad  
of the package to a ground plane under the device on two  
layers of the PC board can reduce the thermal resistance  
of the package and PC board considerably.  
Table ±  
AVX  
Kemet  
www.avxcorp.com  
www.kemet.com  
Murata  
Taiyo Yuden  
Vishay  
www.murata.com  
www.t-yuden.com  
www.vishay.com  
TDK  
www.component.tdk.com  
Derating Power at High Temperatures  
Layout Considerations  
To prevent an overtemperature condition in high power  
applications, Figure 6 should be used to determine the  
maximumcombinationofambienttemperatureandpower  
dissipation.  
Duetohighswitchingfrequencyandhightransientcurrents  
produced by LTC3260, careful board layout is necessary  
for optimum performance. A true ground plane and short  
connections to all the external capacitors will improve  
performanceandensureproperregulationunderallcondi-  
tions. Figure 5 shows an example layout for the LTC3260.  
The power dissipated in the LTC3260 should always fall  
underthelineshownforagivenambienttemperature. The  
power dissipated in the LTC3260 has three components.  
Power dissipated in the positive LDO:  
GND  
+
+
+
P
= (V – V  
) • I  
LDO LDO  
LDO  
IN  
Power dissipated in the negative LDO:  
C
FLY  
V
V
P
= (|V | – |V  
|) • I  
and  
IN  
+
OUT  
LDO  
OUT  
LDO  
LDO  
Power dissipated in the inverting charge pump:  
R
T
LDO  
LDO  
P
= (V – |V |) • (I  
+ I  
)
CP  
IN  
OUT  
OUT  
LDO  
C
+
where I  
denotes any additional current that might be  
BYP  
OUT  
C
BYP  
pulled directly from the V  
pin. The LDO current is  
OUT  
also supplied by the charge pump through V  
therefore included in the charge pump power dissipation.  
and is  
OUT  
GND  
3260 F05  
The total power dissipation of the LTC3260 is given by:  
Figure 5. Recommended Layout  
+
P = P  
D
+ P  
+ P  
LDO CP  
LDO  
3260f  
12  
LTC3260  
APPLICATIONS INFORMATION  
6
ThederatingcurveinFigure6assumesamaximumthermal  
θ
= 43°C/W  
JA  
resistance, θ , of 43°C/W for the package. This can be  
JA  
5
4
achieved from a printed circuit board layout with a solid  
ground plane and a good connection to the exposed pad  
of the LTC3260 package.  
THERMAL  
SHUTDOWN  
T = 175°C  
J
3
2
It is recommended that the LTC3260 be operated in the  
T = 150°C  
J
region corresponding to T ≤ 150°C for continuous opera-  
J
tion as shown in Figure 6. Short-term operation may be  
RECOMMENDED  
OPERATION  
1
0
acceptablefor150°C<T <175°Cbutlong-termoperation  
J
in this region should be avoided as it may reduce the life of  
–50 –25  
0
25 50 75 100 125 150 175  
the part or cause degraded performance. For T > 175°C  
AMBIENT TEMPERATURE (°C)  
J
3260 F06  
the part will be in thermal shutdown.  
Figure 6. Maximum Power Dissipation vs Ambient Temperature  
TYPICAL APPLICATIONS  
Low Power ±14V Power Supply from a Single-Ended 18V Input Supply  
9
10  
+
24V  
28V  
V
LDO  
IN  
C4  
C1  
4.7µF  
R1  
LTC3260  
4.7µF  
1
1.91M  
13  
14  
+
+
+
EN  
EN  
ADJ  
BYP  
11  
12  
R2  
100k  
15  
MODE  
GND  
R3  
100k  
8
3
4
+
C
BYP  
C2  
7
1µF  
C
ADJ  
R4  
1.91M  
6
5
–24V  
V
OUT  
LDO  
C3  
4.7µF  
3260 TA02  
C7  
4.7µF  
RT  
2
High Voltage Input to Bipolar Output with Highly Efficient Dividing/Inverting Charge Pump  
11  
12  
+
13.5V TO 32V  
5V  
V
LDO  
IN  
+
C1  
4.7µF  
50V  
C4  
4.7µF  
1
13  
10  
R1  
EN  
EN  
316k  
15  
16  
+
+
ADJ  
BYP  
+
R2  
100k  
C2  
1µF  
50V  
C
C5  
0.01µF  
D1  
MBR0540  
LTC3260  
C6  
D2  
R3  
3
4
0.01µF  
MBR0540  
BYP  
ADJ  
100k  
D3  
MBR0540  
C3  
1µF  
50V  
R4  
316k  
7
5
6
–5V  
C
LDO  
C7  
NOTE: THE LTC3260 WILL ALWAYS RUN  
V
OUT  
4.7µF  
C8  
4.7µF  
25V  
IN CONTINUOUS FREQUENCY REGARDLESS  
3260 TA04  
OF THE MODE PIN SETTING BECAUSE V  
OUT  
MODEGND RT  
14 17  
IS ALWAYS LESS THAN –1/2V  
IN  
VIN – V – IOUT ROL  
F
2
VOUT ~ –  
– V  
F
2
3260f  
13  
LTC3260  
TYPICAL APPLICATIONS  
18V Dual Tracking Bipolar Supply with Outputs from ±5V to ±15V  
11  
12  
+
28V  
OUT  
V
LDO  
IN  
+
C1  
4.7µF  
50V  
C3  
4.7µF  
35V  
1
13  
10  
R1  
EN  
EN  
732k  
15  
16  
+
+
ADJ  
BYP  
+
R2  
73.2k  
R3  
500k  
C
C4  
C2  
1µF  
50V  
0.01µF  
LTC3260  
4
3
7
ADJ  
BYP  
C
C5  
0.01µF  
R4  
732k  
14  
2
5
6
–OUT  
MODE  
RT  
LDO  
V
C6  
C7  
4.7µF  
50V  
OUT  
4.7µF  
GND  
17  
35V  
3260 TA05  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DE Package  
14-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1708 Rev B)  
R = 0.115  
TYP  
0.40 ±0.10  
4.00 ±0.10  
(2 SIDES)  
8
14  
R = 0.05  
TYP  
0.70 ±0.05  
3.30 ±0.05  
1.70 ±0.05  
3.30 ±0.10  
3.60 ±0.05  
2.20 ±0.05  
3.00 ±0.10  
(2 SIDES)  
PACKAGE  
OUTLINE  
1.70 ±0.10  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
0.35 × 45°  
TOP MARK  
(SEE NOTE 6)  
CHAMFER  
(DE14) DFN 0806 REV B  
7
1
0.25 ±0.05  
0.75 ±0.05  
0.200 REF  
0.25 ±0.05  
0.50 BSC  
0.50 BSC  
3.00 REF  
3.00 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
PACKAGE OUTLINE MO-229  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
3260f  
14  
LTC3260  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MSE Package  
16-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1667 Rev E)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 ±0.102  
(.112 ±.004)  
2.845 ±0.102  
(.112 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
8
0.35  
REF  
5.23  
(.206)  
MIN  
1.651 ±0.102  
(.065 ±.004)  
1.651 ±0.102  
(.065 ±.004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
16  
9
0.305 ±0.038  
0.50  
(.0197)  
BSC  
NO MEASUREMENT PURPOSE  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
RECOMMENDED SOLDER PAD LAYOUT  
16151413121110  
9
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
0° – 6° TYP  
4.90 ±0.152  
(.193 ±.006)  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MSE16) 0911 REV E  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
3260f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC3260  
TYPICAL APPLICATION  
Low Noise ±±1V Power Supply from a Single-Ended ±5V Input Supply (Frequency = 100kHz)  
9
10  
+
12V  
15V  
V
LDO  
LTC3260  
IN  
C4  
C1  
10µF  
R1  
10µF  
1
909k  
13  
14  
+
+
EN  
EN  
ADJ  
BYP  
11  
+
R2  
100k  
C5  
10nF  
12  
15  
MODE  
GND  
C6  
10nF  
R3  
100k  
8
3
4
+
C
BYP  
C2  
7
1µF  
C
ADJ  
R4  
909k  
6
5
–12V  
V
OUT  
LDO  
3260 TA03  
C7  
10µF  
C3  
10µF  
RT  
2
R5  
200k  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1144  
Switched-Capacitor Wide Input Range Voltage Converter with  
Shutdown  
Wide Input Voltage Range: 2V to 18V, I < 8µA,  
SD  
SO8 Package  
LTC1514/LTC1515  
LT®1611  
Step-Up/Step-Down Switched-Capacitor DC/DC Converters  
V : 2V to 10V, V : 3.3V to 5V, I = 60µA, SO8 Package  
IN  
OUT  
Q
150mA Output, 1.4MHz Micropower Inverting Switching Regulator V : 0.9V to 10V, V  
= 34V, ThinSOT™ Package  
IN  
OUT  
LT1614  
250mA Output, 600kHz Micropower Inverting Switching Regulator V : 0.9V to 6V, V  
= 30V, I = 1mA, MS8, SO8  
OUT Q  
IN  
Packages  
LTC1911  
250mA, 1.5MHz Inductorless Step-Down DC/DC Converter  
V : 2.7V to 5.5V, V  
= 1.5V/1.8V, I = 180µA,  
Q
IN  
OUT  
MS8 Package  
LTC3250/LTC3250-1.2/ Inductorless Step-Down DC/DC Converters  
LTC3250-1.5  
V : 3.1V to 5.5V, V  
= 1.2V, 1.5V, I = 35µA,  
Q
IN  
OUT  
ThinSOT Package  
LTC3251  
500mA Spread Spectrum Inductorless Step-Down DC/DC  
Converter  
V : 2.7V to 5.5V, V : 0.9V to 1.6V, 1.2V, 1.5V, I = 9µA,  
IN  
OUT  
Q
MS10E Package  
LTC3252  
Dual 250mA, Spread Spectrum Inductorless Step-Down DC/DC  
Converter  
V : 2.7V to 5.5V, V : 0.9V to 1.6V, I = 50µA,  
IN  
OUT  
Q
DFN12 Package  
LT1054/LT1054L  
Switched-Capacitor Voltage Converters with Regulator  
V : 3.5V to 15V/7V, I  
= 100mA/125mA, N8, S08,  
IN  
OUT  
SO16 Packages  
3260f  
LT 0412 • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY